دوستان به جای 09357795285 شماره جدید 09217354724 رو بگیرید

دوستان به جای 09357795285 شماره جدید 09217354724 رو بگیرید

مقاله دانشجویی

طراحی سایت


مقاله دانشجویی
 
تحقیق پروزه ومفالات دانشجویی
Yahoo Status by RoozGozar.com

نوشته شده در تاريخ جمعه 15 دی 1391برچسب:, توسط aryan

تست 11 (سال 77)

مجموعه ی نقاط مرزی یک مجموعه ی E از یک فضای متریک، مجموعه ای است ...


1) باز


2) بسته


3) هم باز و هم بسته


4) نه باز و نه بسته


حل تست:


گزینه ی 2.


مرز زیر فضای E از X، مجموعه ی نقاطی از فضای X است که هر همسایگی از هر نقطه ی آن، اشتراکی ناتهی با E و متمم E داشته باشد. با کمی دقت می توان ثابت کرد که متمم مرز، باز و در نتیجه مرز، مجموعه ای بسته است. (البته راه دیگر، اثبات این مطلب است که مرز E، شامل نقاط حدی خود است.)



هر گاه X یک فضای متریک،  فشره و  باز باشد، آنگاه ........... فشرده است.


1) 


2) 


3) 


4) 


حل تست:


گزینه ی 2.


می نوان نوشت: ؛ چون  بسته و زیر مجموعه ای از یک فضای فشرده است، بنابر خودش نیز یک فضای فشرده است.



تست 13 (سال 78)


هرگاه  دنباله ی آشیانی از فواصل غیر تهی در  باشد، تحت کدام یک از شرایط زیر،  ناتهی است؟


1)  ها بسته باشند.


2)  ها بسته و کراندار باشند.


3)  ها کراندار باشند.


4)  ها همبند باشند.


حل تست:


گزینه ی 2.


شرط اصلی، فشرده بودن است؛ اما در  فشردگی معادل بسته و کراندار است.




تست 14 (سال 78)


اگر A و B زیر مجموعه های  باشند، به قسمی که A بسته و B فشرده باشد و ، در این صورت کدام گزینه صحیح نمی باشد؟


1) A+B بسته است.


2) مجموعه ی بازی مانند V شامل A وجود دارد، به قسمی که  فشرده و .


3) تابع پیوسته ای مانند  وجود دارد به قسمی که  و .


4) نقاطی مانند  وجود دارند به قسمی که



حل تست:


گزینه ی 2.


اگر A بی کران باشد،  نیز بی کران است و نمی تواند فشرده باشد.



تست 15 (سال 78)


اگر ، در این صورت بستار  (کوچکترین مجموعه ی بسته در  و شامل A) عبارت است از:


1) 


2) 


3) 


4) 


حل تست:


گزینه ی 3.


m را ثابت نگاه دارید و n را به بی نهایت میل دهید؛ هم چنین n و m را با هم به بی نهایت میل دهید. ثابت کنید A غیر از این ها نقطه ی حدی دیگری ندارد.


تست 16 (سال 79)


اگر  با متر معمولی در نظر گرفته شود، مجموعه ی  مجموعه ای است ..........


1) فشرده و همبند


2) نه فشرده و نه همبند


3) فشرده و ناهمبند


4) همبند است ولی فشرده نیست.


حل تست:


گزینه ی 2.


شکل A داخل هذلولی همراه با مرزهای آن است، بنابر این بی کران است و در نتیجه فشرده نیست؛ هم چنین به وضوح همبند نیست.



در فضای متریک  که ، مجموعه ی  (یعنی گوی باز به مرکز 2 و شعاع یک پنجم) برابر است با:


1) 


2) 


3) 


4) 


حل تست:


گزینه ی 4.


کافی است تعریف گوی باز را بنویسید.




تست 18 (سال 80)


اگر ، آنگاه  کدام است؟


1) 


2) 


3) 


4) 


حل تست:


گزینه ی 1.


A یک زیر فضای گسسته ی یک فضای متری اقلیدسی ناشماراست و لذا A شامل هیچ همسایگی از نقاط خود نیست.



تست 19 (سال 80)


قرار دهید  به عنوان زیر مجموعه ای از زوجهای مرتب در .


1)  نقطه ی درونی A است.


2) مجموعه ی A باز است.


3) مجموعه ی A بسته است.


4)  نقطه ی حدی این مجموعه است.


حل تست:


گزینه ی 4.


اگر یک بار m را ثابت نگاه دارید و n را به بی نهایت میل دهید و سپس m را به بی نهایت میل دهید، مشخص است که مبدأ نقطه ی حدی A است که عضو آن نیست. پس 3 درست نیست. از طرفی A شماراست و لذا 1 و 2 درست نیست.



ست 20 (سال 80)


کدام گزینه نادرست است؟


1) اجتماع هر دو مجموعه همبند با اشتراک ناتهی مجموعه ای است همبند.


2) اشتراک هر دو مجموعه ی همبند  برای ، مجموعه ای است همبند.


3) تنها زیر مجموعه ی (ناتهی) همبند فضای اعداد گویا، تک عنصری است.


4) تنها زیر مجموعه های (ناتهی) همبند فضای متریک گسسته، تک عنصری هستند.


حل تست:


گزینه ی 1.


دو قرص بسته ی مماس بر هم را در نظر بگیرید. هریک از آنها همبند ولی اجتماع آن ها همبند نیست.


نکته: برای گزینه ی 4 به اینجا مراجعه کنید. (یك فضای گسسته همبند نیست مگر اینكه تك عضوی باشد. زیرا در غیر این صورت مجموعه همه ی تك عضویها تشكیل یك جداسازی برای این فضا می دهد(چون در فضای گسسته هر مجموعه ی تك عضوی هم باز است وهم بسته) و می دانیم كه هر فضایی كه دارای یك جداسازی باشد همبند نیست. پس هر فضای گسسته با بیش از یك عضو همبند نیست.)



تست 21 (سال 80)


در فضای متریک ، کدام عبارت، مرز مجموعه ی A نیست؟


1) 


2) 


3) 


4) 


حل تست:


گزینه ی 3.


با توجه به تعریف، مرز  عبارت است از ؛ حال کافی است قرار دهید  و .





تست 22 (سال 81)


فرض کنید  و ؛ آنگاه


1)  فشرده در Y است.


2)  باز و بسته در Y است.


3)  کامل در Y است.


4)  چگال در Y است.


حل تست:


گزینه ی 2 و 3 !!


به وضوح هر نقطه ی ، نقطه ی داخلی (نسبت به متر Y) است و  شامل نقاط حدی خود است؛ همچنین  مساوی نقاط حدی خود (البته به عنوان زیر فضای Y) و لذا کامل است.


 در Y فشرده نیست، زیرا در  فشرده نیست.  چگال در Y نیست، زیرا با بستار خود مساوی است.



تست 23 (سال 81)


کدام یک از نقاط، انباشتگی (تجمع یا حدی) مجموعه ی  است؟


1) 


2) 1


3) 


4) 2


حل تست:


گزینه ی 2.


قرار دهید m=1 و n را به بی نهایت میل دهید. (نقاط انباشتگی A مجموعه ی  است.)


کدام یک از توابع d در اعداد حقیقی، متر نیست؟


1) 


2) 


3) 


4) 


حل تست:


گزینه ی 3.


در گزینه ی 3 داریم:   که مخالف تعریف متر است.



تست 25 (سال 81)


فرض کنید  یک فضای متریک و ؛ کدام گزینه همواره درست است؟


1) اگر A همبند نامتناهی باشد، آنگاه  کامل (Perfect) است.


2) اگر A کامل و کراندار باشد، آنگاه A فشرده است.


3) اگر A کامل باشد، آنگاه A ناشماراست.


3) اگر A کامل باشد، آنگاه همبند است.


حل تست:


گزینه ی 1.


برای اثبات گزینه ی 1، ثابت کنید که اگر  کامل نباشد، عضوی از A مانند a که نقطه ی تنهای آن است وجود دارد به گونه ای که مجموعه ی  در A هم باز است و هم بسته که متناقض همبندی A است. برای رد سه گزینه ی دیگر، X را اعداد گویا و A را مجموعه ی همه ی اعداد گویا در بازه ی  فرض کنید.



نظرات شما عزیزان:

نام :
آدرس ایمیل:
وب سایت/بلاگ :
متن پیام:
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

 

 

 

عکس شما

آپلود عکس دلخواه:






.: Weblog Themes By Pichak :.


----------------- --------------------------

  • اس ام اس عاشقانه
  • گوگل رنک